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Abstract

Multimodal content, such as mixing text with images,
presents significant challenges to rumor detection in social
media. Existing multimodal rumor detection has focused on
mixing tokens among spatial and sequential locations for uni-
modal representation or fusing clues of rumor veracity across
modalities. However, they suffer from less discriminative uni-
modal representation and are vulnerable to intricate location
dependencies in the time-consuming fusion of spatial and se-
quential tokens. This work makes the first attempt at multi-
modal rumor detection in the frequency domain, which ef-
ficiently transforms spatial features into the frequency spec-
trum and obtains highly discriminative spectrum features for
multimodal representation and fusion. A novel Frequency
Spectrum Representation and fUsion network (FSRU) with
dual contrastive learning reveals the frequency spectrum is
more effective for multimodal representation and fusion, ex-
tracting the informative components for rumor detection.
FSRU involves three novel mechanisms: utilizing the Fourier
transform to convert features in the spatial domain to the fre-
quency domain, the unimodal spectrum compression, and the
cross-modal spectrum co-selection module in the frequency
domain. Substantial experiments show that FSRU achieves
satisfactory multimodal rumor detection performance.

Introduction
With the rapid development of social media in various as-
pects of our lives, the prevalence of content from multiple
sources and in diverse formats has significantly increased. A
prime example is the combination of text of varying lengths
accompanied by images. However, along with this prolifer-
ation of multimodal media, a more sophisticated and con-
cerning issue has arisen: multimodal rumors. Multimodal
rumors refer to disseminating misinformation or false infor-
mation through social media platforms, incorporating multi-
ple modes of communication such as text and images. These
rumors often defy logical reasoning and lack credibility. Re-
search reveals that rumors are shared more extensively on
Facebook than on mainstream news (Willmore 2016). As a
result, it has become imperative to detect and mitigate multi-
modal rumors to effectively manage the associated risks and
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ensure compliance with social media norms and guidelines
(Allcott and Gentzkow 2017; Zhang et al. 2023).

Recent studies of multimodal rumor detection primarily
focus on two key aspects: learning spatial and sequential de-
pendencies in uni-modality and fusing evidence of rumor ve-
racity across different modalities (Chen et al. 2022; Zheng
et al. 2022; Singhal et al. 2022). 1) To obtain informative
uni-modal representation, researchers have employed vari-
ous neural models, such as Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), and Trans-
formers to perform token mixing over spatial locations of
images or sequential positions of text. However, these meth-
ods suffer from less discriminative unimodal representation,
hindering subsequent fine-grained cross-modal fusion. 2)
Existing approaches often apply contrastive learning (Ying
et al. 2023) or co-attention mechanisms (Qian et al. 2021)
to achieve multimodal alignment or fusion for detecting ru-
mor across modalities. However, they may either overlook
the interpretable fine-grained fusion or encounter intricate
location dependencies in fusing spatial and sequential to-
kens. Moreover, current approaches for fine-grained fusion,
such as co-attention mechanisms, often exhibit quadratic
time complexity (Rao et al. 2021). These issues collectively
undermine the accuracy and efficiency of multimodal rumor
detection models, highlighting the need for further advance-
ments in this field.

To address the issues, we make the first attempt from
a new paradigm and architecture in this work: multimodal
spectrum rumor detection. We contend that the frequency
spectrum offers a more effective means of representing and
fusing multimodal data. Inspired by signal processing theo-
ries (Mateos et al. 2019), we can utilize Fourier transforms
to transform sequential (text) or spatial (images) data to the
frequency domain. The Fourier transform often generates
a sparse frequency spectrum with a significant portion of
frequency components approaching zero (shown in Figure
1). This characteristic facilitates obtaining discriminative
uni-modal representation and emphasizing (suppressing)
veracity-relevant (irrelevant) features for detection. In addi-
tion, the frequency spectrum provides a global view (Rao
et al. 2021), allowing each spectrum component to attend
to all features in the spatial domain. Unlike the position-
based alignment in co-attention mechanisms (Zheng et al.
2022), the spectrum exhibits global patterns (see Figure 1),
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allowing a more comprehensive sense of intricate location
dependencies within/across modalities between rumors and
non-rumors. Moreover, point-wise multiplication in the fre-
quency domain is equivalent to self-attention in the spatial
domain, avoiding quadratic time complexity (Appendix A).

After 18-month battle 
with cancer, David 
Bowie dies at 69, leaving 
exceptional music legacy

This is real? Shark in New 
Jersey #HurricaneSandy
#Sandy

Raw Data Spectrogram Raw Data Spectrogram

(i) non-rumor (ii) rumor

Figure 1: Two examples on Twitter visualize the raw data
and its spectrograms. It shows the spectrum has centrally
concentrated components and discriminative patterns.

Accordingly, we propose an architecturally simple and
computationally efficient multimodal spectrum rumor detec-
tor: a Frequency Spectrum Representation and fUsion net-
work (FSRU) with dual contrastive learning. FSRU com-
prises three key components: text and image embedding,
multimodal frequency spectrum representation and fusion
module, and detection with distribution similarity. Espe-
cially, the frequency spectrum representation and fusion
module includes four core operations: we introduce 1) dis-
crete Fourier transform (DFT) to convert features in the spa-
tial domain to the frequency domain; 2) unimodal spectrum
compression to compress frequency domain features; 3)
cross-modal spectrum co-selection to select spectrum com-
ponents; and 4) inverse DFT (IDFT) to reverse frequency do-
main features to the spatial domain. By utilizing filter banks
in the frequency domain, unimodal spectrum compression
generates spectral compressed representations to reveal po-
tential features within each modality and portray distinct
feature patterns. Cross-modal spectrum co-selection makes
use of complementary dependencies between modalities to
select informative spectrum components that are beneficial
in identifying rumors. Subsequently, we devise a fusion
module that leverages the similarity of feature distributions
to generate a cohesive multimodal representation and intro-
duce dual contrastive learning to enhance multimodal learn-
ing. We conduct experiments on two real-world datasets to
evaluate our proposed approach, FSRU. The results demon-
strate that FSRU yields favorable outcomes across different
evaluation metrics and aspects.

Our contributions are twofold:

• An architecturally simple and computationally efficient
novel method Frequency Spectrum Representation and
fUsion network (FSRU) with dual contrastive learning
is proposed for multimodal rumor detection. Unlike ex-
isting approaches that primarily focus on features in the
spatial/sequential domain, FSRU aims to capture dis-
criminative unimodal features and fuse cross-modal ev-
idence of rumor veracity in the frequency domain. This
architecturally simple approach offers a fresh perspective
on multimodal rumor detection.

• A frequency spectrum representation and fusion mod-
ule is proposed to extract rumor evidence that is con-
cealed in the frequency components from both unimodal
and cross-modal perspectives. The unimodal spectrum
compression explores clearer patterns in text and image
representations. The cross-modal spectrum co-selection
guides retaining relevant frequency components while
fusing multimodal spectrum features, effectively reduc-
ing the impact of irrelevant frequency components.

Related work
Multimodal Rumor Detection
Previous work attempts to solve multimodal rumor detec-
tion by concatenating text and image features (Wang et al.
2018; Cui, Wang, and Lee 2019; Singhal et al. 2019; Zhang
et al. 2020). They concatenate multimodal features from the
spatial dimension without considering modal interactions.
To address this deficiency, MFN (Chen et al. 2021) em-
ploys a self-attentive fusion module to capture the relation-
ships between text and image. CAFE (Chen et al. 2022) in-
troduces cross-modal alignment and ambiguity learning to
learn cross-modal correlations while integrating multimodal
features. Hidden state contextual information complements
the modal representation during the feature representation
phase. Sun et al. (Sun et al. 2021) design a modality-shared
embedding and introduce external knowledge to assist with
rumor detection. Recently, attention-based functions have
been popularly involved in multimodal rumor detection.
MFAN (Zheng et al. 2022) enhances the model represen-
tation by extracting mutual information between modalities
through cross-modal co-attention mechanisms. To improve
the multimodal learning capability, HMCAN (Qian et al.
2021) adopts a Transformer-based contextual attention net-
work to extract multimodal contextual complementary in-
formation. BMR (Ying et al. 2023) proposes the Improved
Multi-gate Mixture-of-Expert networks to learn information
from unimodal and multimodal features through single-view
prediction and cross-modal consistency learning.

Fourier Transform in Deep Learning
Fourier transform plays a vital role in the area of digital sig-
nal processing. It has been introduced to deep learning for
enhanced learning performance (Ehrlich and Davis 2019;
Chi, Jiang, and Mu 2020; Li et al. 2020; Yang and Soatto
2020; Yi et al. 2023c,a). GFNet (Rao et al. 2021) utilizes
fast Fourier transform to convert images to the frequency
domain and exchange global information between learnable
filters. As a continuous global convolution independent of
input resolution, Guibas et al. (Guibas et al. 2021) design
the adaptive Fourier neural operator frame token mixing. Xu
et al. (Xu et al. 2020) devise a learning-based frequency se-
lection method to identify trivial frequency components and
improve the accuracy of classifying images. On text clas-
sification, Lee-Thorp et al. (Lee-Thorp et al. 2022) use the
Fourier transform as a text token mixing mechanism. Fur-
thermore, the Fourier transform is also applied to forecast
time series (Cao et al. 2020; Lange, Brunton, and Kutz 2021;
Koç and Koç 2022; Yang and Hong 2022). To increase the



accuracy of multivariate time-series forecasting, Cao et al.
(Cao et al. 2020) propose a spectral temporal graph neu-
ral network (StemGNN), which mines the correlations and
time dependencies between sequences in the spectral do-
main. Yang et al. (Yang and Hong 2022) propose bilinear
temporal spectral fusion (BTSF), which updates the fea-
ture representation in a fused manner by explicitly encod-
ing time-frequency pairs and using two aggregation mod-
ules: spectrum-to-time and time-to-spectrum.

Our work is inspired by (Rao et al. 2021; Xu et al. 2020;
Yi et al. 2023b) but differs from them. To our knowledge,
there are no existing techniques for multimodal rumor detec-
tion that employ the same architecture for frequency domain
characterization as our approach. Our approach differs from
other spatial domain techniques in that we not only convert
the original features into the frequency domain but also per-
form a series of complex-valued computation operations in
the frequency domain.

Problem definition
We formulate multimodal rumor detection as a binary clas-
sification task, where multimodal a refers to text and image
modalities, denoted as a ∈ {t, v}. Given a multimodal ru-
mor dataset D = {X ,Y}, each sample is denoted as (x, y),
and x can be represented by x = {xt, xv}, where xt stands
for text and xv for image. y ∈ {0, 1} is the rumor veracity
label corresponding to sample x, y = 1 indicates that the
sample is a rumor, while y = 0 indicates that the sample is
true. This work aims to incorporate text and image features
to predict the rumor label ŷ ∈ {0, 1}.

Methodology
We propose a Frequency Spectrum Representation and fU-
sion network (FSRU) with dual contrastive learning to tackle
the problem of multimodal rumor detection. As illustrated in
Figure 2, FSRU comprises three components: 1) text and im-
age embedding obtains textual and visual unimodal embed-
dings for social media posts through two embedding mod-
ules, respectively. 2) frequency spectrum representation and
fusion module explores unimodal spectrum information and
cross-modal spectrum interactions. 3) detection with distri-
bution similarity performs the final detection after obtaining
a multimodal representation by capturing the complemen-
tary semantic relationships between unimodality. Next, we
explain each component in detail.

Text and Image Embedding
Given a rumor sample x = {xt, xv}, we first embed its raw
text and image, respectively. Regarding the text sequence
xt = [w1, w2, ..., wm] (m is the number of words), we si-
multaneously employ word embedding and positional em-
bedding to encode each word, denoted by:

wi = WE(wi) + PEt(wi) (1)

where WE(·) is the word embedding and PEt(·) is the po-
sition embedding for text sequence. Accordingly, we obtain
the text embedding xt = [w1,w2, ...,wm]. Regarding im-
ages, we divide each image into h × w non-overlapping

patches xv = [p1, p2, ..., pn] (n = h × w) and adopt CNN
(LeCun, Bengio et al. 1995) to generate meaningful repre-
sentations:

pi = CNN(PEv(pi)) (2)
where PEv(·) is the patch embedding for the image. We ob-
tain the image embedding xv = [p1,p2, ...,pn].

Frequency Spectrum Representation and Fusion
The frequency spectrum representation and fusion module
losslessly transform spatial domain features into the fre-
quency domain, obtaining discriminative spectrum features
for each modality. The frequency spectrum gives text and
image representations a complete view of spatial features
and facilitates obtaining informative components and elimi-
nating irrelevant components from a global view.

Spectrum representation We first transform the spatial
features into spectrum features using Discrete Fourier trans-
form (DFT). The spectrum of text features can be obtained
as follows:

Xt[k] = Fseq(x
t[i]) =

m−1∑
i=0

xt[i]e−j(2π/m)ki (3)

where Xt ∈ Cm×d is a complex tensor, Xt[k] is the spec-
trum of xt[i] at the frequency 2πk/m,Fseq(·) is the 1D DFT
along the sequence dimension, and j is the imaginary unit.
The spectrum of image embedding can be obtained:

Xv[k] = Fpat(x
v[i]) =

n−1∑
i=0

xv[i]e−j(2π/m)ki (4)

where Xv ∈ Cn×d is a complex tensor, Fpat(·) denotes
the 1D DFT along the patch dimension. Self-attention com-
putes the spatial dependencies in a quadratic time complex-
ity, while DFT can be efficiently implemented via a fast
Fourier transform in logarithmic time complexity. Refer to
Appendix C for a more detailed comparison.

Unimodal spectrum compression (USC) Spatial features
are effectively consolidated within each frequency element,
enabling the extraction of informative features from both
text and images through the point-wise product in the fre-
quency domain. We introduce a filter bank for each modal-
ity Xa, a ∈ {t, v} to compress the spectrum and obtain the
significant features associated with rumors. We use Ka =
[ka

1 ,k
a
2 , ...,k

a
k] to represent the filter bank, where k is the

number of filters in the filter bank:

X̂a =

k∑
i=1

1

l
|Xa|2 ⊙ ka

i cos(
(2i− 1)π

2k
), a ∈ {t, v} (5)

where ⊙ is the element-wise multiplication, |Xa|2 is the
power spectrum of Xa, l is the length of Xa. The |Xa|2 op-
eration smooths the spectrum, highlighting the main com-
ponents of the spectrum from an intra-modal perspective.
It also facilitates the subsequent learning of unimodal com-
pression. cos((2i−1)π/2k) compacts better energy and can
aggregate the more important information in the rumor fea-
tures. Its combination of application with the filter bank Ka

allows for efficient frequency domain feature compression.
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Figure 2: The architecture of our proposed Frequency Spectrum Representation and fUsion network (FSRU) for multimodal
rumor detection. FSRU comprises three main components: a text and image embedding module, a frequency spectrum repre-
sentation and fusion module, and a classification with distribution similarity.

Cross-modal spectrum co-selection (CSC) Based on the
postulation that certain spectrum components have limited
contributions to rumor detection, we propose an emphasize
and suppress (E&S) module, which aims to enhance in-
formative components and suppress irrelevant components
within each modality by co-attending to the unimodal spec-
trum. We first perform average pooling over the compressed
spectrum X̂a, a ∈ {t, v}, subsequently applying convolu-
tion to obtain the representation of the rumor visual/text
clues. Consequently, we can derive two selection filters, one
from the visual spectrum and another from the text spec-
trum. The filters serve the purpose of co-selecting informa-
tive features from each other. We perform cross-modal spec-
trum co-selection by multiplying the two filters with the cor-
responding unimodal spectrum in a staggered manner:

X̃t = X̂t ⊙ Conv(Avg(X̂v ⊙Θv)) (6)

X̃v = X̂v ⊙ Conv(Avg(X̂t ⊙Θt)) (7)

where ⊙ is the element-wise multiplication, Θa denotes
the trainable parameters with the same dimension as X̂a,
Conv(·) is an 1×1 convolutional layer, and Avg(·) is the av-
erage pooling function. The convolutional layer and Θa fa-
cilitate learning how to emphasize informative components
and suppress irrelevant components for multimodal fusion.

Finally, we employ inverse discrete Fourier transform
(IDFT, F−1

seq and F−1
pat) to convert the spectral representa-

tions of text and image back into the spatial domain:

xt ← F−1
seq(X̃

t) (8)

xv ← F−1
pat(X̃

v) (9)

The fine-grained cross-modal spectrum co-selection facili-
tates the common analysis of spectral components in text
and images during the inference process and guarantees the
fusion of multimodal rumor features, which allows the re-
tention of the informative components more properly.

Rumor Detection with Contrastive Learning
Contrastive Learning Objectives To promote multi-
modal learning in training, we introduce a dual contrastive
learning module, consisting of two parts: 1) fully-supervised
intra-modal contrastive learning based on rumor veracity la-
bels Lfull, and 2) self-supervised inter-modal contrastive
learning based on multimodal spatial semantics Lself .

In a mini-batch B, we divide samples according to the
rumor veracity label into R0, R1. For the anchor sample
ri ∈ R1, the positive pair can be denoted as (ri, rj), where
rj ∈ R1, j ̸= i. The samples in R0 are regarded as nega-
tive examples. As such, we follow (Lin et al. 2022) to define
the pairwise objective function with anchor sample and pos-
itive or negative samples L1(x

a,xa), a ∈ {t, v}. The final
fully-supervised intra-modal contrastive loss is as follows:

Lfull =
∑
M

[
∑

ri∈R1

1

|R1|
∑

j,rj∈R1,j ̸=i

L1(x
a
i ,x

a
j )+

∑
rk∈R0

1

|R0|
∑

l,rl∈R1,l ̸=k

L1(x
a
k,x

a
l )]

(10)

where | · | denotes the number of corresponding samples.
For self-supervised inter-modal contrastive loss, we con-

sider the text and associated image of the given anchor sam-
ple ri to be a positive sample, while the other pairs are con-
sidered negative samples. We use the InfoNCE loss (He et al.
2020) to optimize the image and text features, denoted as
L2(x

t,xv) and L2(x
v,xt). And the self-supervised inter-

modal contrastive loss is as follows:

Lself =
1

2|B|

|B|∑
i=1

[L2(x
t
i,x

v
i ) + L2(x

v
i ,x

t
i)] (11)

where |B| denotes the number of samples in mini-batch B.

Detection based on distribution similarity After obtain-
ing the improved text and image representations, we mea-
sure the Jensen-Shannon (JS) divergence between the two



features to learn the distribution similarity, which is subse-
quently utilized to control the final multimodal rumor rep-
resentation output. Since it is difficult to infer the posterior
probability p from the given data sample, we generate an
approximation of its distribution q. Specifically, the poste-
rior probability of unimodal can be denoted separately as
q(zt|xt) and q(zv|xv). The divergence of different modal
distributions in xa can then be measured as follows:

γ = JS(q(zt|xt)||q(zv|xv)) (12)

where JS(·) denotes the JS divergence, and the similarity
score γ is computed by the JS divergence. Accordingly, we
can calculate the integrated multimodal representation and
apply a fully connected layer FC to predict the label ŷ:

m = (1− γ)(Wtxt +Wvxv) + γxt + γxv (13)

ŷ = Softmax(FC(m)) (14)
where Wt and Wv are trainable parameters, and γ is a hy-
perparameter to adaptively weigh cross-modal features.

Taking rumor detection as a binary classification task, we
then apply the cross-entropy loss as the detection objective:

Lcls = −Ey∼Ŷ [ylog(ŷ) + (1− y)log(1− ŷ)] (15)

Finally, the final loss can be written as:

L = Lcls + αLfull + βLself (16)

with hyperparameters α, β to balance different objectives.

Experiments
In this section, we evaluate the effectiveness of our proposed
model 1 on two real-world datasets.

Experimental Setup
Datasets To facilitate comparison with the baselines, we
evaluate the proposed FSRU on two publicly available mul-
timodal datasets: Twitter (Boididou et al. 2014) and Weibo
(Jin et al. 2017). We comprehensively describe each dataset
in Appendix B.1.

Baselines We compare our FSRU to recent baseline mod-
els: att-RNN (Jin et al. 2017), EANN (Wang et al. 2018),
MVAE (Khattar et al. 2019), SpotFake (Singhal et al. 2019),
HCMAN (Qian et al. 2021), CAFE (Chen et al. 2022), BMR
(Ying et al. 2023), and LogicDM (Liu, Wang, and Li 2023).
We comprehensively describe each baseline in Appendix
B.2 and explain the rationale behind selecting these specific
baselines.

Settings We implemented our algorithms using PyTorch
1.12 and conducted all experiments on a single NVIDIA
RTX 3080 Ti GPU. The loss function is optimized using
the Adam algorithm (Kingma and Ba 2015). The evaluation
metrics include Accuracy, Precision, Recall, and F1 score.
To ensure fairness, we employ five-fold cross-validation for
the experiments. We utilize publicly available Word2Vec
(Mikolov et al. 2013) to obtain the word embeddings. Im-
ages are resized into 224×224. The maximum sequence

1https://github.com/dm4m/FSRU

length is set to 50 for Weibo and 32 for Twitter. The dimen-
sion of text and image embedding is set to 256. The model is
trained for 50 epochs with a batch size of 64. For Weibo, the
initial learning rate is set to 1e-2, while for Twitter, it is set
to 1e-5. When selecting hyper-parameters α and β, we con-
sider values from the set {0.0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}.
Ultimately, we set α and β to 0.2 for both datasets. The
number of filters in unimodal spectrum compression denoted
as k is chosen from the set {1, 2, 4, 8}, and the final value
selected for the results is k = 2. To efficiently implement
the DFT and IDFT, we utilized the Fast Fourier Transform
(FFT) and inverse FFT. The code and implementation details
can be found in the supplementary materials.

Results and Analysis
The performance comparison between FSRU and eight other
baselines on the two datasets is presented in Table 1. We
further investigate the complexity of FSRU in terms of
FLOPs and parameter volumes, compared with state-of-the-
art methods. The results are shown in Appendix C.

Att-RNN, EANN, and MVAE overlook the deep seman-
tic relationships and interactions among features, leading
to limitations in their detection accuracy. SpotFake lever-
ages pre-trained models to extract text and image features,
demonstrating strong performance in classifying rumors but
relatively weaker performance in classifying non-rumors.
The Transformer is utilized as a feature encoder in HMCAN,
enabling effective token mixing through self-attention in the
spatial domain and facilitating the acquisition of multimodal
representations. To effectively aggregate unimodal represen-
tations and cross-modal correlations, CAFE utilizes cross-
modal alignment and disambiguation mechanisms. While
it demonstrates good performance on the Weibo dataset,
its effectiveness diminishes when applied to the Twitter
dataset. BMR leverages multi-view learning to estimate the
importance of different modalities for adaptive aggregated
unimodal representation, resulting in superior performance.
LogicDM considers logical relationships between predicates
and selects predicates and cross-modal objects to derive and
evaluate interpretable logical clauses, resulting in improved
performance on the Twitter dataset.

Our proposed FSRU has delivered highly favorable re-
sults on both datasets, consistently ranking 1st or 2nd across
all evaluation metrics. FSRU effectively explores and in-
tegrates multimodal features within the frequency domain.
By leveraging the Fourier transform to bridge the spatial
and frequency domains, FSRU achieves a lossless transfor-
mation of multimodal rumor features into a shared space.
FSRU takes a cross-modal perspective to control spectral
components while also capturing the intrinsic characteris-
tics of rumors from an unimodal perspective. This conceptu-
ally straightforward yet computationally efficient approach
significantly enhances the performance of rumor detection.
In addition, FSRU employs multimodal feature aggregation
based on distributional similarity and two types of con-
trastive learning to learn the complementary relationships
between cross-modal features. This allows FSRU to adap-
tively aggregate multimodal features for detection. However,
it is important to note that the impact on the Weibo dataset



Table 1: Performance comparison on the Weibo and Twitter datasets. The best performance is highlighted in bold, while under-
lining highlights the follow-up, and ∗ indicates the statistically significant improvement (i.e., two-sided t-test with p < 0.05).

Rumor Non-rumorDatasets Methods Accuracy Precision Recall F1 Precision Recall F1
att-RNN (Jin et al. 2017) 0.772 0.854 0.656 0.742 0.720 0.889 0.795
EANN (Wang et al. 2018) 0.827 0.847 0.812 0.829 0.807 0.843 0.825

MVAE (Khattar et al. 2019) 0.824 0.854 0.769 0.809 0.802 0.875 0.837
SpotFake (Singhal et al. 2019) 0.892 0.902 0.964 0.932 0.847 0.656 0.739

HMCAN (Qian et al. 2021) 0.885 0.920 0.845 0.881 0.856 0.926 0.890
CAFE (Chen et al. 2022) 0.840 0.855 0.830 0.842 0.825 0.851 0.837
BMR (Ying et al. 2023) 0.884 0.875 0.886 0.880 0.874 0.881 0.877

LogicDM (Liu, Wang, and Li 2023) 0.852 0.862 0.845 0.853 0.843 0.859 0.851

Weibo

FSRU 0.901* 0.922* 0.892 0.906 0.879* 0.913 0.895*
att-RNN (Jin et al. 2017) 0.664 0.749 0.615 0.676 0.589 0.728 0.651
EANN (Wang et al. 2018) 0.648 0.810 0.498 0.617 0.584 0.759 0.660

MVAE (Khattar et al. 2019) 0.745 0.801 0.719 0.758 0.689 0.777 0.730
SpotFake (Singhal et al. 2019) 0.777 0.751 0.900 0.820 0.832 0.606 0.701

HMCAN (Qian et al. 2021) 0.897 0.971 0.801 0.878 0.853 0.979 0.912
CAFE (Chen et al. 2022) 0.806 0.807 0.799 0.803 0.805 0.813 0.809
BMR (Ying et al. 2023) 0.872 0.842 0.751 0.794 0.885 0.931 0.907

LogicDM (Liu, Wang, and Li 2023) 0.911 0.909 0.816 0.859 0.913 0.958 0.935

Twitter

FSRU 0.952* 0.983* 0.938* 0.960* 0.901 0.984* 0.940*

appears to be slightly less pronounced compared to the Twit-
ter dataset, possibly due to inherent differences between the
two datasets. Firstly, the Weibo dataset is relatively smaller
in size when compared to the Twitter dataset. Secondly, the
Weibo dataset comprises a subset of images that exhibit
lower quality or contain less informational content.

Ablation Study
To assess the effectiveness of different modules within
FSRU, we conduct a comparative analysis with sub-models
denoted as “-w/o USC”, “-w/o CSC”, “-w/o DSF”, and “-
w/o CL”. These variants represent FSRU without consider-
ing unimodal spectrum compression, cross-modal spectrum
co-selection, distribution similarity-based fusion, and dual
contrastive learning, respectively. The results are shown in
Table 2 and Figure 3.

Table 2: Comparison of different FSRU variants.
Weibo Twitter

Accuracy F1 Accuracy F1
FSRU 0.901 0.902 0.952 0.950

-w/o USC 0.866 0.865 0.910 0.908
-w/o CSC 0.883 0.882 0.924 0.922
-w/o DSF 0.876 0.875 0.947 0.943
-w/o CL 0.889 0.889 0.937 0.936

Quantitative analysis As shown in Table 2, It is evident
that removing either the unimodal spectrum compression or
the cross-modal spectrum co-selection adversely affects the
model’s performance on both datasets. Without employing
unimodal spectrum compression, the model loses the ability
to explore distinctive patterns in modal frequency responses.
Similarly, the absence of cross-modal spectrum component
interactions hinders the model’s capacity to learn dependen-
cies between multimodal features. Moreover, excluding the

distribution similarity-based fusion and the dual contrastive
learning module from the model leads to a slight decline
in performance. These findings highlight the significance of
fusing multimodal features by measuring multimodal distri-
bution similarity and leveraging dual contrastive learning.

Qualitative analysis To further analyze the effect of the
frequency spectrum representation and fusion module, we
qualitatively visualize the features on the Weibo and Twit-
ter test set with t-SNE (Van der Maaten and Hinton 2008)
as depicted in Figure 3. The FSRU variants “-w/o USC”
and “-w/o CSC” demonstrate the ability to discriminate
multimodal rumor features, but there is a clear overlap be-
tween features across different labels. In contrast, the fea-
tures learned by FSRU exhibit clear boundaries between la-
bels, effectively reducing the overlapping between features.

Figure 3: T-SNE visualization of learned representations.



Figure 4: Interpretative visualization of rumor and non-rumor cases. Refer to Appendix D for more illustrative cases.

Impact of the Number of Filters k
We conducted experiments by varying the value of k in USC
from 1 to 8, as presented in Table 3. The results exhibit a pat-
tern of initially increasing performance followed by a subse-
quent decline on both datasets. Specifically, there is a signif-
icant performance improvement from k = 1 to k = 2, while
a slight decrease is observed from k = 2 to k = 8. By set-
ting k = 2, the model has the ability to acquire diverse and
distinct feature patterns from various dimensions of the fre-
quency response while still maintaining an appropriate com-
putational cost. Therefore, we determine that k = 2 is the
optimal choice for FSRU on both datasets.

Table 3: Effect of the number of filters in USC.

Filter Weibo Twitter
Accuracy F1 Accuracy F1

1 0.839 0.838 0.938 0.936
2 0.901 0.902 0.952 0.950
4 0.896 0.895 0.944 0.942
8 0.894 0.893 0.931 0.928

Case Study
To provide an intuitive demonstration of the learning pro-
cess of the Frequency Spectrum Representation and Fusion
(FSRF) in FSRU, we visualize xa, X̂a, and X̃a (a ∈ t, v),
along with the corresponding co-information for the two
modalities, as shown in Figure 4. In the case of rumor, as
FSRF is learned, the features gradually acquire a distinct
pattern, allowing for better differentiation. This results in
a clearer identification of concentrated spectral energy. On
the other hand, in the case of non-rumors, the model seeks
to capture truthfulness clues expressed through multimodal

features to the best of its ability. FSRF leverages co-selection
across modalities to emphasize and suppress specific spec-
tral features across modalities, thereby potentially revealing
cues that indicate the veracity of rumors.

We have visualized the multimodal features of the two
mentioned cases before and after the learning process of
FSRF. In the first image, the model after FSRF learning con-
centrates on the person in the image, who does not match the
person or event mentioned in the text. However, this person
does not correspond to the individual or event mentioned
in the accompanying text. This image therefore is classified
as a rumor. In the second image, the model concentrates on
the waves, the cloudy sky, and the surfer in the distance.
This alignment between the visual elements and the textual
description suggests consistency and coherence. Hence this
image is classified as a non-rumor.

Conclusion
We first attempt to introduce a frequency spectrum represen-
tation and fusion network (FSRU) for multimodal rumor de-
tection. FSRU is unique with a frequency spectrum represen-
tation and fusion to effectively capture both the frequency of
feature changes and their intensity in the frequency domain,
which is essential for FSRU to learn multimodal features
properly. Substantial experiments demonstrate that our pro-
posed approach achieves advanced performance. Our future
studies include exploring deep insights and mechanisms in
frequency-based multimodal fusion to improve multimodal
rumor detection. The proposed model has the potential for
more multimodal tasks and scenarios, we will further inves-
tigate the effectiveness and interpretability of the spectrum
in multimodal fusion.
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A. Theoretically Analysis
In this section, we theoretically analyze the equivalence
between self-attention and frequency-domain computation,
i.e., we can efficiently reformulate self-attention via point-
wise computation in the frequency domain.

Given the input tensor, X we denote the n-th token as
xn ∈ Rd and define N as the sequence length.

Definition 1 (Self-Attention)
We express the self-attention Self-Att:RN×d → RN×d us-
ing the formulation of kernel integration (Tsai et al. 2019;
Cao 2021; Kovachki et al. 2021; Guibas et al. 2021):

Self-Att = softmax(
XWq(XWk)

⊤
√
d

)XWv (17)

Define K = softmax((XWq(XWk)
⊤)/
√
d)as the N × N

score array. Then the self-attention can be treated as an
asymmetric matrix-valued kernel κ = [N ] × [N ] → Rd×d

parameterized as κ[s, t] = K[s, t] ◦ W⊤
v . Therefore, self-

attention can be viewed as a kernel summation.

Self-Att(X)[s] =

N∑
t=1

κ[s, t]X[t] ∀s ∈ [N ] (18)

The concept of kernel summation can be extended to encom-
pass continuous kernel integrals. The input tensor X repre-
sents a spatial function in the function space X ∈ (D,Rd),
where it is defined on a domain D:

Self-Att(X)[s] = K(X)(s) =

∫
D

κ(s, t)X(t) dt ∀s ∈ D

(19)
where for the continuous input X ∈ D, the kernel integral
K : (D,Rd)→ (D,Rd) is defined as (Guibas et al. 2021).

Definition 2 (Global Convolution)
Assuming a green kernel κ(s, t) = κ(s−t), the above kernel
integral leads to global convolution:

K(X)(s) =

∫
D

κ(s− t)X(t)s dt ∀s ∈ D (20)

The convolution is a smaller complexity class of operation
compared to integration. Furthermore, the global convolu-
tion can be efficiently implemented by the fast Fourier trans-
form in the frequency domain.

Frequency-Domain Computation
As per the convolution theorem (Soliman and Srinath 1990),
global convolution in the spatial domain can be equiva-
lently represented as multiplication in the frequency domain.
Therefore, for the continuous input X ∈ D the kernel inte-
gral (Guibas et al. 2021) is defined as:
K(X)(s) = F−1(F(κ) · F(X))(s) ∀s ∈ D (21)

where · is the point-wise multiplication and F ,F−1 is the
continuous Fourier transform and inverse Fourier transform.

In summary, employing frequency-domain computation
to reformulate self-attention is an efficient and theoretically-
equivalent alternative. This analysis further theoretically
guarantees the reasonableness and feasibility of our pro-
posed method: using the frequency spectrum to represent
and fuse multimodal data.

B. Experimental Details
B.1 Datasets
In order to facilitate comparison with the baselines, we eval-
uate the proposed frequency spectrum representation and fu-
sion network on two publicly available multimodal datasets:

• The Twitter dataset (Boididou et al. 2014): collected from
Twitter and released for Twitter Verifying Multimedia
Use task. The training set contains 4,992 real tweets and
9,470 rumor tweets. The testing set contains 1,215 real
tweets and 717 rumor tweets.

• The Weibo dataset (Jin et al. 2017): collected from Xin-
Hua News Agency and Weibo. The training set contains
3,783 real tweets and 3,749 rumor tweets. The testing set
contains 996 real tweets and 1,000 rumor tweets.

Following (Sun et al. 2021; Chen et al. 2022), we remove
those instances without any text or image since the goal is
to perform multimodal rumor detection by fusing text and
image information. In addition, if a tweet has more than one
corresponding image, we will choose one at random.

B.2 Baselines
We compare our proposed model with several state-of-the-
art baselines listed as follows:

• att-RNN (Jin et al. 2017): att-RNN uses a recurrent neu-
ral network with an attention mechanism to extract multi-
modal features and to learn the relationships between vi-
sual features and joint text/social features.

• EANN (Wang et al. 2018): EANN utilizes an adversarial
network to improve the fake news detection performance.
It consists of three components: the multi-modal feature
extractor, the fake news detector, and the event discrimi-
nator.

• MVAE (Khattar et al. 2019): MVAE employs a mul-
timodal variational autoencoder to reconstruct the two
modalities from the learned shared representation, and
thus discovers the cross-modality association.

• SpotFake (Singhal et al. 2019): SpotFake uses BERT to
fuse contextual features and uses VGG-19 to learn the im-
age features. Then, for the detection, the two modal repre-
sentations are joined.

• HCMAN (Qian et al. 2021): HCMAN leverages BERT
and ResNet to obtain representations for text and image
respectively and models the multi-modal context informa-
tion and the hierarchical semantics of text jointly in a uni-
fied deep model.

• CAFE (Chen et al. 2022): CAFE can adaptively aggre-
gate discriminative cross-modal correlation features and
unimodal features based on the inherent cross-modal am-
biguity.

• BMR (Ying et al. 2023): BMR proposes the Improved
Multi-gate Mixture-of-Expert networks (iMMoE), which
learn information from unimodal and multimodal features
through single-view prediction and cross-modal consis-
tency learning.



• LogicDM (Liu, Wang, and Li 2023): LogicDM intro-
duces five meta-predicates and integrates interpretable
logic clauses to express the reasoning process of the target
task.

C. Analysis of Complexity
We conducted a comparison between FSRU and three base-
line models, namely BMR, CAFE, and SpotFake, in terms
of FLOPs and parameters. As shown in Table 4, the pro-
posed FSRU outperforms BMR and SpotFake while requir-
ing lower computational complexity. CAFE demonstrates
the lowest computational complexity among the considered
models. However, due to relying solely on encoders and
MLPs, CAFE falls short in detection performance compared
with SOTA baselines.

Table 4: Comparison of trainable parameters and computa-
tional speed. * indicates results from baseline papers.

FSRU BMR* CAFE* SpotFake*
Param 1.13M 94.39M 0.68M 124.37M
FLOPs 9.05G 18.42G 0.01G 30.42G

We also compare our frequency spectrum representation
and fusion module with the core module/operator (i.e., Spa-
tial MLP and self-attention) for representing/fusing multi-
modal data in recent prevalent baselines. The results, pre-
sented in Table 5, demonstrate the superior effectiveness of
our proposed module over both approaches.

Table 5: Complexity of Spatial MLP, Self-Attention, and
our proposed frequency spectrum representation and fusion
module. n := hw, m, and d refer to the sequence size for the
image, the sequence size for the text, and the dimensionality,
respectively.

Models Complexity (FLOPs)
image text

Spatial MLP n2d m2d
Self-Attention nd2 + n2d m2d+md2

Ours module ndlog(n) + (n+ d)d
mdlog(m)+

(mlog(d) + d)d

D. Training Convergence
To further validate the convergence performance of the
frequency spectrum representation and fusion module in
FSRU, we conduct a comparison with the multi-head atten-
tion and spatial-MLP methods. In particular, we replace the
frequency domain functions with the multi-head attention
and spatial-MLP within the frequency spectrum represen-
tation and fusion module, resulting in a variant denoted as
FSRU-MA and FSRU-MLP, respectively. In Figure 5, we
present a comparison of the loss and accuracy performance
separately on both datasets. It reports that FSRU converges
faster and achieves better detection results than FSRU-MA,
indicating the efficiency and effectiveness advantages of
our spectrum representation and fusion over self-attention.

We also observed that the spatial-MLP-based model ex-
hibits inferior classification and convergence performance,
despite its advantages of lower computational complexity
and shorter training time.

(i) Weibo (ii) Twitter
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Figure 5: Training loss curve and testing accuracy curve for
FSRU and FSRU-MA. The x-axis denotes training epochs.

E. More Case Study
In this section, we provide additional visualization cases of
both rumors and non-rumors, as shown in Figure 6.

Initially, we analyze the transformations in the multi-
modal features of each example by comparing their states
before and after the spectral analysis. (1) In Figure 6.(a), our
model, when combined with the accompanying text, iden-
tifies the presence of the Statue of Liberty in the image.
However, the presence of Lady Liberty in this context is il-
logical. Upon closer examination, it becomes apparent that
the image has been post-processed or manipulated, indicat-
ing that the corresponding tweet is a rumor. (2) In Figure
6.(b), by considering the textual cues, the model directs its
attention towards the person lying on the mattress and the
edge of the crag depicted in the figure. However, the pres-
ence of these elements does not align with common-sense
expectations. As a result, the model classifies this example
as a rumor. (3) In Figure 6.(c), following the analysis using
FSRF, the model successfully classified the tweet as a non-
rumor by considering the textual content, particularly the
phrase ”destroy some things,” in conjunction with the pres-
ence of floating wood depicted in the accompanying picture.
(4) In Figure 6.(d), in this scenario, the text depicts two el-
derly individuals prepared to purchase movie tickets, which
aligns with the description provided in the accompanying
image. The model correctly localizes the elderly and accu-
rately classifies the corresponding tweet as a non-rumor.

Overall, we can observe that non-rumors tend to exhibit
a broader focus on spectral features as they are typically
grounded in factual information, resulting in more consistent
textual and visual descriptions. Consequently, the frequency
spectrum analysis captures various plausible aspects embed-
ded within the multimodal states. Conversely, rumors are of-
ten built on fabricated facts and manipulated images. In such
cases, frequency spectrum analysis serves as a means to de-
tect crucial traces of forgery. As a result, the spectral fea-
tures associated with rumors tend to be concentrated within
specific ranges of hidden states, indicating the presence of
anomalies or inconsistencies.



Figure 6: More visualization cases.

In summary, as aforementioned, the Fourier transform of-
fers a sparse frequency spectrum representation for multi-
modal features, in contrast to the initial embedding. This
spectral representation transcends the limitations of location
perception and enables the discovery of informative hidden

states within each modality from a global view, leading to
a more comprehensive learning of the intricate location de-
pendencies present in multimodal features. Hence, we argue
utilizing frequency spectrum analysis benefits more effec-
tive and interpretable multimodal rumor detection.


